1. Find the derivative of each function. Assume all letters except for x are constants.

(a) $f(x) = ax^3 + bx + c$
(b) $f(x) = xe^{ax}$
(c) $f(x) = ax + \sin(b^2x)$

2. Assume a is a positive constant, and consider the family of functions $f(x) = (x^2 + ax)^2$. Draw a number line indicating where the derivative is positive and where the derivative is negative. Where is f increasing and where is f decreasing?

3. Assuming a, b, and c are positive constants, find the location of all inflection points for the family of functions $f(x) = ax^3 - bx^2 + cx + d$. Where is f concave up and where is f concave down?

4. If $f(x) = x^2e^{-ax}$, where a is a positive constant, then where is f increasing and where is f decreasing?